В какой мы живем вселенной


Где мы живем: интересные теории мультивселенной. Альманах ХолмТайн

Мы вероятно населяем один из миров мультивселенной, предлагают интересный взгляд реальность физики-теоретики. Оказывается, мы живет во Вселенной, которая скорее всего является не единственной в своем роде. Фактически, безграничная для нас Вселенная возможно представляет лишь один мир из неограниченного числа миров, входящих в состав «мультивселенной».

мы живем в удивительном мире больших загадок, где даже Вселенных может быть великое множество

Конечно увлекательная концепция вызывает некоторое недоверие, за ней стоят проверенные физические данные. К тому же насчитывается несколько способов подводящих к заключению о существовании мультивселенной – в этом независимо друг от друга уверяют несколько теоретиков.

В сущности, эксперты больше склоняются к факту существования недоступных для наблюдения вселенных, чем их отсутствия. Мы их никогда не увидим, и навряд ли там побываем, считают теоретические исследователи пространств. По крайней мере на сегодня неизвестен способ совершить путешествие в скрытые вселенные.

Ниже идет список из пяти невероятных теорий, тем не менее дающих нам уверенность в том, что мы населяем всего лишь один мир из многих слоев мультивселенной.

БЕСКОНЕЧНОЕ ЧИСЛО ВСЕЛЕННЫХ

Конечно, никто сегодня не может с уверенностью представить структуру пространства-времени, но, скорее всего, она имеет растянутую на неопределенное расстояние форму. Если понятие пространства-времени — это вечность, тогда в какой-то момент она начинает повторяться, поскольку количество вариантов организации частиц в пространстве-времени ограничено.

Если посмотреть на проблему отдаленно, то можно увидеть «вариации» самого себя, по сути неограниченное количество вариантов собственной индивидуальности. Одни из «близнецов» будут заняты тем же, чем и вы в данную минуту, вторые к примеру, оденутся иначе, а третьи примут иное решение и т.д.

Поскольку поддающаяся наблюдению Вселенная растягивается только на расстояние, которое смог покрыть свет с момента Большого Взрыва (день образования нашей Вселенной), то пространство-время, находящееся вне пределов этого пути, может рассматриваться независимой Вселенной. Таким образом, в колоссальной мешанине мироздания имеется неограниченное множество вселенных.

ПУЗЫРЬКОВЫЕ ВСЕЛЕННЫЕ

Сверх предложенных неопределенного количества вселенных, организованных расширяющейся материей пространства-времени, отдельные объекты могут стать плодом действия так называемой «теории бесконечного вздутия».

Суть теории «вздутия» сводится к быстрому расширению Вселенной после Большого Взрыва, напоминая в результате события воздушный шар. Бесконечное вздутие предложенное космологом университета Тафтс и сообщает: некоторые «карманы» пространства прекращают расширение, в то время как другие области продолжают распространяться, создавая при этом множество изолированных «пузырьковых вселенных».

ПАРАЛЛЕЛЬНЫЕ ВСЕЛЕННЫЕ

Из теории струн вычленяют еще одно элегантное соображение – идею «мембранных миров» — параллельных вселенных вне пределов нашей досягаемости. Авторами интересной теории, активно используемой во множестве гипотез (вплоть до пришельцев) стали ученые института Теоретической Физики (Онтарио, Канада) университета Принстона.

Принесённая учеными идея исходит из возможности существования большего количества измерений, известных нам как три пространственных и одно временное. Вдобавок к нашим трем «мембранным» пространственным измерениям, могут существовать еще три измерения в космических сферах.

ДОЧЕРНИЕ ВСЕЛЕННЫЕ

Применение теоретических выводов квантовой механики, описывающей крохотный мир субатомных частиц, дает еще один вариант образования многочисленных вселенных. Правда квантовая механика изображает мир при помощи вероятностей, а не определенных результатов.

Модель предложенной теории не настаивает, но говорит, что осуществятся всевозможные варианты некоторой ситуации – в своих собственных независимых вселенных.

К примеру, вы стоите на перекрестке с двумя вариантами выбора – левым и правым. В зависимости от вашего шага существующая вселенная разделится на два варианта, в соответствие с выбранным направлением.

МАТЕМАТИЧЕСКИЕ ВСЕЛЕННЫЕ

Между теоретиками до сих пор продолжаются дебаты о том, является ли математика замечательным инструментом для понимания и представления о Вселенной. А может математика – фундаментальная реальность, а все наши наблюдения являются попросту несовершенными ощущениями ее истинной математической природы?

Если последнее наблюдение верно, тогда определенная математическая структура, лежащая в основе нашей Вселенной, является не единственным вариантом.

По сути, все возможные математические структуры живут в форме отдельно взятых вселенных. «Математическая структура — понятие, которое можно описать совершенно независимо от человеческих представлений», говорит автор этой головокружительной идеи. «Я действительно верю в то, что данная вселенная может существовать независимо от меня, и она продолжит свое существование даже при отсутствии человечества».

    Метки: вселенная, гипотеза НОВОСТИ ПАРТНЕРОВ:

holmtain.ru

Множественные вселенные не просто существуют: мы живем в них

Если вы думали, что все ограничивается тем, что мы нашли за космическим горизонтом, готовьтесь передумать.

«Трудно построить модели инфляции, которые не приводят к мультивселенной. Это не невозможно, поэтому я уверен в необходимости проведения дополнительных исследований. Но большинство моделей инфляции действительно ведут к мультивселенной, а доказательства инфляции будут подталкивать нас в направлении серьезного принятия [множественных вселенных]», — сказал однажды Алан Гут, американский физик и космолог, первым предложивший идею инфляции, или космического расширения.

Представьте, что Вселенная, которую мы наблюдаем — от конца до конца, — это просто капля в космическом океане. Что за пределами того, что мы видим, есть больше космоса, больше галактик, больше всего, на бесчисленные миллиарды световых лет дальше, чем мы когда-либо сможем дотянуться. И насколько необозримой может быть Вселенная, настолько же бесчисленным может быть количество похожих на нее вселенных — некоторых больше и старше, некоторых меньше и моложе — рассыпанных по всему пространству-времени. И так же быстро, как расширяются эти вселенные, пространство-время, содержащее их, расширяется еще быстрее, уводит их дальше друг от друга и гарантирует, что никакие две вселенные никогда не встретятся. Похоже на фантастику? Такова научная идея мультивселенных, или множественных вселенных. Но если научный взгляд, который мы сегодня принимаем, верный, эта идея будет не только адекватной, но и неизбежным следствием наших фундаментальных законов, считает физик Итан Зигель.

Идея множественных вселенных уходит корнями в физику, необходимую для описания Вселенной, которую мы видим и в которой обитаем сегодня. Повсюду в небе мы наблюдаем звезды и галактики, сгруппированные в большой космической паутине. Но чем дальше в космос мы смотрим, тем дальше назад во времени мы попадаем. Чем дальше галактики, тем они моложе и, следовательно, менее развиты. В их звездах меньше тяжелых элементов, они кажутся меньше, поскольку произошло меньше слияний, больше спиралей и меньше эллипсов (потому что последним требуется время), и так далее. Если мы будем двигаться до пределов видимого, мы обнаружим самые первые звезды во Вселенной, а за ними — область тьмы, в которой остается только один свет: послесвечение Большого Взрыва.

Сам Большой Взрыв — который случился 13,8 миллиарда лет назад — не был началом пространства и времени, а скорее началом нашей наблюдаемой Вселенной. До этого была эпоха, известная как космическая инфляция, когда само пространство расширялось экспоненциально, наполненное энергией, присущей ткани пространства-времени. Космическая инфляция — это сам по себе пример теории, которая пришла и заменила ту, что была до нее:

  • Она согласовалась со всеми успехами теории Большого Взрыва и охватывала всю современную космологию.
  • Она объяснила ряд проблем, которые не мог объяснить Большой Взрыв, включая и то, почему Вселенная была везде одной температуры, почему она пространственно плоская и почему не осталось никаких высокоэнергетических реликтов вроде магнитных монополей.
  • И она сделала много новых прогнозов, которые можно было протестировать наблюдательно, большинство из которых были подтверждены.

Было, впрочем, и одно следствие, которое предсказала теория инфляции. Мы не знаем, можем ли мы подтвердить его или нет: множественные вселенные.

Инфляция приводит к экспоненциальному расширению пространства, что может очень быстро вылиться к тому, что любое ранее существовавшее искривленное пространство будет казаться плоским

Инфляция приводит к тому, что пространство расширяется по экспоненте. То есть берется что угодно, существовавшее до Большого Взрыва, и становится намного, намного, намного больше, чем было. Пока что это нас устраивает: это объясняет, как мы получили однородную и огромную Вселенную. Когда инфляция заканчивается, Вселенная наполняется материей и излучением, появление которых мы наблюдаем как раскаленный Большой Взрыв. И здесь-то начинаются странности. Чтобы инфляция завершилась, независимо от того, какое квантовое поле за нее отвечает, ей нужно перейти из высокоэнергетического нестабильного состояния в низкоэнергетическое и стабильное. Этот переход и «скатывание» вниз в долину — вот что приводит инфляцию к концу и вызывает Большой Взрыв.

Но независимо от того, какое поле несет ответственность за инфляцию, как и во всех других областях, подчиняющимся законам физики, оно должно быть по своей природе квантовым полем. Как и все квантовые поля, оно описывается волновой функцией, с вероятностью разбегания волны со временем. Если величина поля будет медленно скатываться в долину, квантовое разбегание волновой функции будет быстрее скатывания, означая, что, возможно — даже вероятно, — инфляция постепенно приведет к Большому Взрыва.

Если бы инфляция была квантовым полем, величина поля будет разбегаться со временем, причем разные области пространства будут принимать разные реализации значения поля. Во многих регионах значение поля будет попадать на дно долины, заканчивая инфляцию, но во многих других инфляция будет продолжаться сколько угодно в будущем

Поскольку пространство расширяется с экспоненциальной скоростью во время инфляции, это означает, что с течением времени создается экспоненциально большее число областей пространства. В некоторых областях инфляция будет заканчиваться: там, где поле скатывается в долину. Но в других инфляция будет продолжаться, создавая все больше и больше пространства вокруг каждой области, где заканчивается инфляция. Темп инфляции намного быстрее, чем даже максимальная скорость расширения заполненной материей и энергией Вселенной, поэтому в кратчайшие сроки участки инфляции захватывают все. Согласно механизмам, которые обеспечивают нас достаточной инфляцией для создания Вселенной, которую мы видим, нашу область пространства, где инфляция закончилась, окружает намного больше других областей — где инфляция продолжается или закончилась не сразу.

Инфляция продолжается бесконечно, несмотря на участки, где она завершилась

Именно здесь происходит явление, известное как вечная инфляция. Там, где заканчивается инфляция, рождается Большой Взрыв и Вселенная — вроде той, которую мы и наблюдаем — похожая на нашу собственную. Но там, где инфляция не заканчивается, рождается больше инфляционного пространства, которое дает рост другим регионам, в которых будут большие взрыва, отделенные от нашего, и другим регионам, в которых начинается инфляция.

Насколько большой является наша Вселенная, это лишь небольшая часть от всего, что есть на самом деле

Эта картина огромных вселенных, намного больших, чем скудная часть, которую мы в состоянии наблюдать, постоянно создаваемая раздувающимся пространством, — это и есть мультивселенная. Важно понимать, что мультивселенная не является научной теорией самой по себе. Она не делает прогнозов и наблюдаемых явлений, до которых мы можем дотянуться. Нет, мультивселенная сама по себе является теоретическим прогнозом, который вытекает из законов физики, которые мы вывели на сегодняшний день. Возможно, это даже неизбежное следствие этих законов: если взять инфляционную Вселенную, управляемую квантовой физикой, то получится вот это.

Возможно, наше понимание этого состояния, что было до Большого Взрыва, неправильное, и что наши представления об инфляции совершенно неверные. В таком случае существование множественных вселенных не будет окончательным следствием. Но предсказание вечной инфляции, содержащей бесчисленное число карманных вселенных, является прямым следствием наших лучших теорий, если они верны.

Что же такое мультивселенная, в таком случае? Она может выйти за пределы физики и стать первой физической мотивированной «метафизикой», с которой мы когда-либо сталкивались. Впервые мы понимаем границы того, чему может научить нас наша Вселенная. До тех пор мы можем предсказывать, но не сможем ни подтвердить, ни опровергнуть тот факт, что наша Вселенная является лишь одной небольшой частью более обширного царства: мультивселенной.

hi-news.ru

Почему наша Вселенная оказалась «идеально настроенной» для жизни?

Человеку Вселенная может показаться очень неприветливым местом. В вакууме космоса вы быстро задохнетесь, а на поверхности звезды вас изжарит дотла. Насколько мы знаем, вся жизнь прикована к узкой полоске атмосферы, окружающей скалистую планету, которую мы населяем. И пока происхождение жизни на Земле остается загадкой, вместе с ними есть и другие серьезные вопросы без ответов. А именно: почему законы физики позволяют существовать жизни вообще? Неужели они универсальны и жизнь просто обязана существовать в таких условиях?

Но Вселенная состоит из фундаментальных кирпичиков, частиц и сил, строительных блоков для всего, что мы видим вокруг. И мы просто не знаем, почему эти кусочки должны обладать такими свойствами, какими обладают.

У нас есть много наблюдаемых фактов о нашей Вселенной, вроде того, что электроны почти ничего не весят, а некоторые кварки в тысячи раз тяжелее. И гравитация намного слабее других сил, которые удерживают атомные ядра вместе.

Почему наша Вселенная устроена таким образом? Мы просто не знаем

Но что, если…

Мы имеем полное право задавать вопрос «что, если…». Что, если бы электрон был массивнее, а кварки легче? Что, если бы электромагнетизм был сильнее сильного ядерного взаимодействия? Какой бы тогда была Вселенная?

Давайте рассмотрим углерод, элемент, выкованный в сердцах массивных звезд, необходимый для известной нам жизни.

Первоначальные расчеты таких звездных печей показали, что они были очевидно неэффективными в производстве углерода. Потом британский астроном Фред Гойл понял, что ядро углерода обладает особым свойством, резонансом, который повышает эффективность. Но если бы сила сильного ядерного взаимодействия была бы другой хотя бы на каплю, она бы уничтожила это свойство и оставила нашу вселенную частично лишенной углерода, а значит и жизни.

На этом история не заканчивается. После того, как был сделан углерод, он созрел и преобразовался в более тяжелые элементы, в частности, кислород. Оказывается, что кислороду из-за силы сильного ядерного взаимодействия не хватает конкретных резонансных свойств, которые повышают эффективность создания углерода.

Это предотвратило быстрое поглощение всего углерода. Конкретная сила сильного взаимодействия привела к тому, что во Вселенной с почти равной смесью углерода и кислорода появился бонус в виде жизни на Земле.

Смерть Вселенной

Все выше — только один пример. Мы можем играть в игры «что, если» со свойствами всех фундаментальных частиц Вселенной. И каждый раз можем задаваться вопросом: какой была бы Вселенная? Ответы будут почти очевидными. Отойди мы немного от изначальных условий — и результатом будет, как правило, стерильный космос.

Также Вселенная могла бы быть мягкой, без сложностей. Или Вселенная могла бы расшириться слишком быстро, чтобы вещество успело конденсироваться в звездах, галактиках и планетах. Или все это могло схлопнуться снова в секунды после рождения материи. Любая сложная жизнь была бы невозможной.

На этом вопросы не заканчиваются. В нашей Вселенной мы живем в комфорте лишь при определенном сочетании пространства и времени и, казалось бы, вполне понятная математическая база лежит в основе известной нам науки. Почему Вселенная такая понятная и предсказуемая? Почему она познаваема? Разве могли бы мы задать такой вопрос, если бы она таковой не являлась?

Наша Вселенная, кажется, балансирует на острие ножа стабильности. Но почему?

Одна из многих

Некоторые считают, что наука с легкостью решит этот вопрос. Возможно, если мы откроем «теорию всего», объединяющую квантовую механику с ОТО Эйнштейна, все относительные массы и силы фундаментальных частей будут абсолютно определены, не останется никаких загадок. Другие считают, что все не так просто.

Некоторые ищут утешения в творце, всемогущем существе, тонко настроившем свойства Вселенной, которые позволяют нам тут существовать. Но переход от науки к сверхъестественному нравится не всем.

Есть, впрочем, и другое возможное решение, которое находится в темном и запутанном уголке науки. Теория суперструн, или М-теория, предполагает, что фундаментальные свойства Вселенной не уникальны, а каким-то образом выбраны вследствие космического броска костей во время ее рождения.

Это дает нам возможное объяснение особых, на первый взгляд, свойств Вселенной, в которой мы живем.

Возможно, наша вселенная — одна из полубесконечного моря вселенных, каждой со своим собственным набором физических свойств, законов и частиц, математических структур и хронологий. Как мы уже увидели, подавляющее большинство этих других вселенных — мертвы и стерильны.

Единственный способ существовать так, чтобы задаваться вопросом «почему мы здесь?» — найти себя во вселенной, способствующей самому нашему существованию. В любой другой вселенной нас просто не было бы, никто не задавался бы вопросами и не удивлялся своему существованию.

Если такая картина множественный вселенных верна, мы должны признать, что фундаментальные свойства нашей вселенной выпали на гигантской космической рулетке, и нам достался победный, счастливый билет. Мы, получается, живем в удачливой вселенной.

hi-news.ru

Где мы живем

12 сентября НАСА объявило, что после 35 лет полета космический зонд Вояджер-1 покинул пределы Солнечной системы. Но что там снаружи?

Подобно старинным мореплавателям, впервые рисовавшим на несовершенных картах открытые ими острова и земли, современные астрономы наносят все новые звездные острова на карту Вселенной. Мы уже знаем, что живем на одной из планет Солнечной системы, которая вращается вокруг центра спиральной галактики Млечный Путь, входящей в Местную группу галактик из Сверхскопления Девы.

В наблюдаемой Вселенной более 100 миллиардов галактик, в каждой из которых в среднем по 100 миллиардов звезд. Непросто представить масштабы доступного телескопам мира. Но самое обидное — все эти миллиарды миров ждут нас, а мы до сих пор не на­учились толком выползать из колыбели. До ближайшей звезды с современными скоростями лететь 10 тысяч лет.

Структура Вселенной

(по данным проекта Millennium simulation. Springel et al., 2005)

Группы галактик объединяются в суперскопления, а те в свою очередь — в филаменты, нити гигантской паутины вещества, между которыми зияют войды — огромные промежутки пустого пространства. На этой компьютерной модели структуры Вселенной желтым обозначена материя,  черным — пустота, а фиолетовым — наблюдаемая лишь косвенно загадочная темная материя. Каждая желтая точка — это одна галактика, а пятнышки покрупнее — скопления и сверхскопления галактик.

564 млн световых лет (диаметр круга)

Солнечная система

в окружении ближайших звезд (На основе рис. Andrew Z. Colvin /wikimedia.org)

В радиусе десятка световых лет от солнечной сис­темы находятся звезды, названия которых хорошо знакомы любителям научной фантастики — Сириус, Альтаир, тау Кита, эпсилон Эридана… Ближе всего к нам тройная звезда Альфа Центавра, расположенная на расстоянии 4,3 световых лет от Земли.

40 световых лет (диаметр цилиндра)

Местная группа галактик

На основе рис. Andrew Z. Colvin / wikimedia.org

Гравитация — главная сила, соединяющая вселенную в одно целое, удерживает рядом с нами две большие галактики и около сотни карликовых. Ближайшие из них — Карликовая эллиптическая галактика в Стрельце (это крошечный по галактическим масштабам спутник Млечного Пути) и Магеллановы Облака, видимые невооруженным глазом. Большие спиральные галактики – это Туманность Андромеды, раза в два побольше Млечного Пути, и Треугольник, раза в два поменьше Млечного Пути. Вселенная расширяется и все дальние галактики постепенно исчезнут за горизонтом событий. Но галактики Местной Группы навсегда останутся рядом с нами, а Туманность Андромеды через миллиарды лет соединится с нашей галактикой.

4 млн световых лет (диаметр цилиндра)

Наша галактика

(Модель, построенная в НАСА, по данным орбитального телескопа Spitzer. R. Hurt / JPL-Caltech /NASA)

Млечный Путь — типичная спиральная галак­тика. Большая часть из 200 миллиардов здешних звезд располагается в диске толщиной около 3 тысяч световых лет. Расстояние от центра диска (там нахо-дится огромная черная дыра) до края — 50 тысяч световых лет. Диск окутан оболочкой из межзвездного газа и, согласно современным теориям, погружен в гигантское облако темной материи радиусом в 10 раз больше диска. Солнце расположено в рукаве Ориона на расстоянии 25 тысяч световых лет от центра Галактики, вокруг которого наша звезда вращается со скоростью 220 км/с, делая полный оборот за один галактический год — 200 миллионов земных лет. Ближе к центру Галактики звезды расположены в 1000 раз плотнее, сам же центр скрыт от наших взоров облаками космического газа и пыли.

105 000 световых лет (диаметр круга)

expert.ru


Смотрите также